Momentum and Energy
Used together, the laws of conservation of momentum and energy allow us to solve otherwise impossible problems. We will often adopt the technique of setting up a systems of equations to do this.
1. Suppose a neutron in a reactor collides elastically with a carbon-12 nucleus at rest. What fraction the kinetic energy of the neutron is transferred to the carbon nucleus? If the initial kinetic energy of the neutron is $6.27 x 10^{-13}$ J then what is its final energy?
$E_{kinetic_nuetron} = \frac{1}{2}m_{neutron}v_{initial}^2$
$E_{kinetic_nuetron} = \frac{1}{2}m_{neutron}v_{final_neutron}^2$
$E_{kinetic_carbon} = \frac{1}{2}m_{carbon}v_{final_carbon}^2$
We will first invoke conservation of momentum. This yields the following:
$\rho_{initial} = \rho_{final}$
$m_{neutron}v_{initial} = m_{neutron}v_{final_neutron} + m_{carbon}v_{final_carbon}$
$m_{neutron}v_{initial} – m_{neutron}v_{final_neutron} = m_{carbon}v_{final_carbon}$
$v_{initial} – v_{final_neutron} = \frac{m_{carbon}}{m_{neutron}}v_{final_carbon}$
$v_{initial} – v_{final_neutron} = 12v_{final_carbon}$
Next, we employ the conservation of energy to obtain:
$E_{initial} = E_{final}$
$\frac{1}{2}m_{neutron}v_{initial}^2 = \frac{1}{2}m_{neutron}v_{final_neutron}^2 + \frac{1}{2}m_{carbon}v_{final_carbon}^2$
$m_{neutron}v_{initial}^2 – m_{neutron}v_{final_neutron}^2 = m_{carbon}v_{final_carbon}^2$
$v_{initial}^2 – v_{final_neutron}^2 = \frac{m_{carbon}}{m_{neutron}}v_{final_carbon}^2$
$v_{initial}^2 – v_{final_neutron}^2 = 12v_{final_carbon}^2$
At this point, the ratio of the ratios to obtain:
$\frac{v_{initial}^2 – v_{final_neutron}^2}{v_{initial} – v_{final_neutron}} = \frac{12v_{final_carbon}^2}{12v_{final_carbon}}$
$v_{initial} + v_{final_neutron} = v_{final_carbon}$
Combining this result with our result, we have:
$v_{initial} + v_{final_neutron} = v_{final_carbon}$
$v_{initial} – v_{final_neutron} = 12v_{final_carbon}$
$2v_{initial} = 13v_{final_carbon} \rightarrow v_{initial} = \frac{13}{2} v_{final_carbon}$
So the fraction we are looking for can be represented as
$\frac{\frac{1}{2}m_{carbon}v_{final_carbon}^2}{\frac{1}{2}m_{neutron}v_{initial}^2} = 12 \left(\frac{2}{13}\right)^2 = \frac{48}{169} = .2840$
Now, we use this result in conjunction with the law of conservation of energy to calculate the kinetic energy transferred to the carbon nucleus to obtain:
$E_{kinetic_neutron} – \frac{48}{169}E_{kinetic_neutron} = E_{final_kinetic_neutron}$
$6.27 x 10^{-13} – \frac{48}{169}6.27 x 10^{-13} = 4.4892 x 10^{-13} J$